Mapping WordNet Instances to Wikipedia
نویسندگان
چکیده
Lexical resource differ from encyclopaedic resources and represent two distinct types of resource covering general language and named entities respectively. However, many lexical resources, including Princeton WordNet, contain many proper nouns, referring to named entities in the world yet it is not possible or desirable for a lexical resource to cover all named entities that may reasonably occur in a text. In this paper, we propose that instead of including synsets for instance concepts PWN should instead provide links to Wikipedia articles describing the concept. In order to enable this we have created a gold-quality mapping between all of the 7,742 instances in PWN and Wikipedia (where such a mapping is possible). As such, this resource aims to provide a gold standard for link discovery, while also allowing PWN to distinguish itself from other resources such as DBpedia or BabelNet. Moreover, this linking connects PWN to the Linguistic Linked Open Data cloud, thus creating a richer, more usable resource for natural language processing.
منابع مشابه
Large-Scale Taxonomy Mapping for Restructuring and Integrating Wikipedia
We present a knowledge-rich methodology for disambiguating Wikipedia categories with WordNet synsets and using this semantic information to restructure a taxonomy automatically generated from the Wikipedia system of categories. We evaluate against a manual gold standard and show that both category disambiguation and taxonomy restructuring perform with high accuracy. Besides, we assess these met...
متن کاملMapping WordNet Domains, WordNet Topics and Wikipedia Categories to Generate Multilingual Domain Specific Resources
In this paper we present the mapping between WordNet domains and WordNet topics, and the emergent Wikipedia categories. This mapping leads to a coarse alignment between WordNet and Wikipedia, useful for producing domain-specific and multilingual corpora. Multilinguality is achieved through the cross-language links between Wikipedia categories. Research in word-sense disambiguation has shown tha...
متن کاملMapping WordNet synsets to Wikipedia articles
Lexical knowledge bases (LKBs), such as WordNet, have been shown to be useful for a range of language processing tasks. Extending these resources is an expensive and time-consuming process. This paper describes an approach to address this problem by automatically generating a mapping from WordNet synsets to Wikipedia articles. A sample of synsets has been manually annotated with article matches...
متن کاملCross-lingual Dutch to English alignment using EuroWordNet and Dutch Wikipedia
This paper describes a system for linking the thesaurus of the Netherlands Institute for Sound and Vision to English WordNet and dbpedia. We used EuroWordNet, a multilingual wordnet, and Dutch Wikipedia as intermediaries for the two alignments. EuroWordNet covers most of the subject terms in the thesaurus, but the organization of the cross-lingual links makes selection of the most appropriate E...
متن کاملDistinguishing between Instances and Classes in the Wikipedia Taxonomy
This paper presents an automatic method for differentiating between instances and classes in a large scale taxonomy induced from the Wikipedia category network. The method exploits characteristics of the category names and the structure of the network. The approach we present is the first attempt to make this distinction automatically in a large scale resource. In contrast, this distinction has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017